impact.plotting.
generic_timecourse
(impact_core_instance_list=None)¶impact.plotting.
get_colors
(number_of_colors, colors=None, cl_scales=['8', 'qual', 'Set1'])¶impact.plotting.
order_preserve_sort
(seq, idfun=None)¶impact.plotting.
printGenericTimeCourse_plotly
(replicateTrialList=None, dbName=None, strainsToPlot=[], titersToPlot=[], secondary_y_axis_titers=None, pts_per_hour=4, output_type='html', stage_indices=None, stage=None, cl_scales=['10', 'qual', 'Paired'], colors=None, yieldFlag=False, titerFlag=True, endpointFlag=False, sortBy='strain_id', img_scale=1, fig_height=None, column_width=400, number_of_columns=3, horizontal_spacing=0.2, vertical_spacing=0.4, row_height=300, format='web', single_subplot=False, plot_curve_fit=False)¶Parameters: | replicateTrialList: ~class`titer`
dbName : str
strainsToPlot : list
titersToPlot : list
output_type : str
stage_indices : list of index pairs defining stages
stage : int
cl_scales : list of color scale identifiers colors : list of str indicating the color ‘rgb(0, 0, 0)’ yieldFlag : bool
titerFlag : bool
endpointFlag : bool
sortBy : str
img_scale : int
fig_height : float
column_width : float
number_of_columns : int
horizontal_spacing : float
vertical_spacing : float
row_height : float
format : str
|
---|
impact.plotting.
print_generic_timecourse_plotly
(replicate_trial_list, product, colors, pts_per_hour, showlegend_flag, fig, sortBy, pltNum, number_of_columns, single_subplot, axis_params, chart_fonts, height, legend_params, plot_curve_fit, data_to_plot='titer')¶impact.plotting.
render_output_ploty
(output_type, fig, number_of_columns=None, column_width_multiplier=None, img_scale=None)¶impact.plotting.
svg_plot
(fig, **kwargs)¶Generates an svg plot from a plotly figure
Parameters: | fig: plotly figure |
---|
impact.plotting.
time_profile_traces
(replicate_trials=None, feature='titer', analyte='OD600', colors=None, cl_scales=['8', 'qual', 'Set1'], label=<function <lambda>>, legendgroup=<function <lambda>>, showlegend=True, pts_per_hour=60)¶impact.plotting.
time_profile_traces_single_trials
(replicate_trial=None, feature='titer', analyte='OD600', colors=None, cl_scales=['8', 'qual', 'Set1'], label=<function <lambda>>, legendgroup=<function <lambda>>, showlegend=True, pts_per_hour=60)¶Return traces for the single trials which compose a replicate for a single analyte
Parameters: | replicate_trial (`ReplicateTrial`): replicate to plot feature (str): feature to plot analyte (str): analyte to plot colors (list): colors to use, will use cl_scales if none cl_scales (dict): colorlover set of colors label (function): lambda function to get identifiers from data legendgroup (function): showlegend (bool) pts_per_hour |
---|